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Introduction (1) b-tu

PDE-based Image Inpainting
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(a) Image repair (b) Image compression

Figure: Important inpainting applications




Introduction (2)

One of the most successful setups uses the Laplacian
[Noma & Misulia, 1959]:
—Au=0, onQ\Qg
u=f, onadQg
duu=0, ondQ\ Qg

Figure: Generic inpainting model with known data fon Q.
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Frequently Encountered Variations

@ Using a mask function ¢ [Weickert & Welk, 2006]:

cu—f+(1—-c)(-Au) =0, onQ
dyu =0, onoQ

with ¢: Q — {0,1}, or [0, 1], or even R

@ Rewriting as a Helmholtz equation [H., 2017]:

Au+—Sy=—C f, on Q\ Qg
1-c c—1

u=f, on Qg
dyu =0, on Q)
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Motivation and Goals
@ Laplace equation is well understood, but:
® regularity of solutions depends on boundary data
® impact of c has received little attention
® boundaries may prevent the existence of a solution
@ On the discrete side, we know that:
® most discretised formulations are well-posed
® they require upper bounds on ¢

® upper bound depends on discretisation of the Laplacian

Verdict:

The current situation is not satisfying!
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Hidden Pitfalls

—Au =0, on B;(0)\ {0}
u=1 whenx=0
u=0, when|x =1

€ PDE does not have a solution

@ naive finite difference discretisation yields linear system
® system matrix is regular (Gersgorin’s disk theorem)




Well-posedness of PDE-based Inpainting (1)

Model Assumptions

The following assumptions are always assumed to hold.
® Qs open and bounded with C* boundary 9Q.
® f:Q->RisC™
® Qg C Qis closed, has positive measure, and C* boundary
@ for mixed boundary value problems, 9Q n dQg = @

Figure: Assumptions on the considered domain



Well-posedness of PDE-based Inpainting (2)

Possible Setups

Depending on size and shape of Qg we obtain

@ Dirichlet problem with (in-)homogeneous boundary conditions
@ Neumann problem with homogeneous boundary conditions

@ mixed Neumann, Dirichlet boundary conditions

(a) Dirichlet problem (b) Neumann problem (c) Mixed problem

Figure: Possible setups to consider



Well-posedness of PDE-based Inpainting (3) m

Theorem ([Ern & Germond, 2004])

The classic inpainting formulation

—Au=0, onQ\Qg
u=f, onoQg
duu=0, ondQ\ Qg

is well-posed. Solutions live in the Sobolev space H'.

Well-posedness is understood in the sense of Hadamard:
1. Solution u exists for every possible Q, Qg, and f
2. Solution u is unique

3. Solution u depends continuously on the data




Well-posedness of PDE-based Inpainting (4)

From Binary to Arbitrary Masks c

Theorem ([Cantrell & Cosner, 2003])
Let 0 < ¢ < 1 hold for all x € Q. The inpainting formulation

cu—N+1—-c)(-ANu=0, onQ
dyu=0, onadQ

is well-posed. Solutions live in the space C>*(Q).

@ c < 1lis not really what we want

@ c > 1 allows contrast enhancing and is important for applications



Well-posedness of PDE-based Inpainting (5)

Idea: Separating Regions

@ Continuous cseparates regions wherec > 1 and ¢ < 1

@ Regions can be handled independently.

@ PDE can be rewritten for each region as:

cu—H-1Q-0Au=0, on Q\Qg
u=f, onQg
du=0, on IQ\ g



Well-posedness of PDE-based Inpainting (6)

From Laplace to Helmholtz

Whenever ¢ > 1 or ¢ < 1, the PDE

clu—H-(0—-c)Au=0, on Q\Qg
u=f, onQg
duu=0, on IQ\ Qg

can be rewritten as an inhomogeneous Helmholtz equation

—Au+nu=g onQ\Qg
u=f on dQg
du=0 on IQ\ Qg

with g := nfand non-constant refraction 1 := %



Well-posedness of PDE-based Inpainting (7)

Weak Formulation of the Helmholtz Equation

The corresponding weak formulation reads

JVuV(p +qupdx = J Afpdx — J ®d, fdS
ONQg OOy AONIQK

which needs to be solved in
V= {ngeHl(Q\QK)‘ ¢‘ Eo}

Note that:
@ 1 > 0forc < 1: Lax-Milgram is applicable
@ 1 <0 forc > 1: Lax-Milgram is not applicable



Well-posedness of PDE-based Inpainting (8)

Existence of a Weak Solution

We observe:

@ the space V can be equipped with the scalar product

(u,p) = J'VuV(p dx
N

@ the Riesz representation theorem asserts the existence of the
bounded linear operator B : V. — V

(Bu, @) = J—nufpdx
oo

¢ H! < L% implies that Bis compact and selfadjoint



Well-posedness of PDE-based Inpainting (9)

@ Our weak formulation

JVuV(pdx—J—r]u(pdx: IAf¢dx—Itp8n fdS

Qg Qg Qg AQNIQK

J

=(u.¢)—(Bu.p) =1(p)

V]

can now be rewritten as a variational equation
(I-Bu=¢t
@ Fredholm alternative implies that I — B is invertible if it is
injective

@ ] — Bis injective if A = 1 is not an eigenvalue of B



Well-posedness of PDE-based Inpainting (10)

@ Bis a compact operator: its spectrum is countable
@ probability of A = 1 being an eigenvalue is 0

@ the problem is almost certainly well posed

Theorem (Well-posedness of PDE-based inpainting)

Inpainting with continuous c is almost certainly well posed.



Take Home Message

*
*
4
*

inpainting with the Laplacian is almost always well posed
solutions are at least in H!
implies that discrete equations should be solvable almost always

non-binary masks are related to the Helmholtz equation



Thank you very much for your
attention!

For more information:
https://www.b-tu.de/fg-angewandte-mathematik/
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