Matrix-Valued Levelings for Colour Images

Michael Breuß*

Laurent Hoeltgen*

Andreas Kleefeld⁺

* Brandenburg Technical University, Germany

⁺ Jülich Supercomputing Centre, Germany

May 16, 2017

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Introduction (1)

What are levelings?

- scale space representation based on morphological filters
- remove details but preserve contours

Definition (Leveling [Meyer, 1998])

An image g is a **leveling** of an image f iff $\forall (p,q)$ neighbors:

$$g_p > g_q \implies f_p \geqslant g_p \text{ and } g_q \geqslant f_q$$

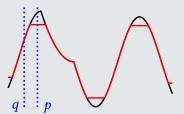


Figure: function f(black) and its leveling g(red)

Properties of levelings

- invariances: translations, rotations, illumination changes
- lack contours in levelings g have stronger contours in function f
- scale space property:

Image gets simplified, but contours remain localized!

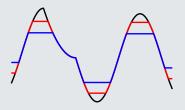


Figure: function f (black) and its levelings g_1 and g_2 (red and blue)

but: levelings require an ordering relation!

Introduction (3)

- Our Applications: texture processing, image compression, ...
 - we want to work with colour valued images
- Our finale alternative to vectorial levelings [Meyer, 2000]
 - extension to colour images
 - investigate properties of levelings on colour images
- Our Stratesymatrix valued colour space with partial ordering

Algorithmic Aspects

- existence of discrete iterative routine
- existence of a PDE-based formulation
- unclear which one is better suited for our tasks
- in the following we denote:

$$(f_1 \lor f_2)(x) := \sup\{ f_1(x), f_2(x) \}$$

 $(f_1 \land f_2)(x) := \inf\{ f_1(x), f_2(x) \}$
 $\delta_B(f)(x) := \sup_{a \in B} \{ f(x-a) \}$
 $\epsilon_B(f)(x) := \inf_{a \in B} \{ f(x+a) \}$

Discrete formulation

We need:

- lacktriangle grey-valued **input image** f
- ♦ marker image M
- **♦** structuring element *B*

Definition (Discrete Levelings [Meyer, 1998])

A leveling is a fixed-point of

$$u_{k+1} = [f \wedge \delta_B(u_k)] \vee \varepsilon_B(u_k), \text{ with } u_0 = M$$

PDE-based formulation

- lacktriangle let Ω be our image domain
- PDE-based dilation and erosion are given by:

$$\partial_t u = \pm \|\nabla u\|, \quad \forall x \in \Omega, \ \forall t > 0$$

Definition (PDE-based levelings [Maragos & Meyer, 1999])

$$\begin{split} \partial_t u &= \operatorname{sgn}(u-f) \| \nabla u \|, \qquad \forall x \in \Omega \\ u(0,x) &= (K_\sigma * f)(x), \qquad \forall x \in \Omega \\ \partial_n u(t,x) &= 0, \qquad \forall x \in \partial \Omega, \ \forall t \geq 0 \end{split}$$

Comparison of the models

• sign of $u_k - f$ switches between dilation and erosion in

$$[f \wedge \delta_B(u_k)] \vee \varepsilon_B(u_k)$$

• $\operatorname{sgn}(u - f)$ switches between dilation and erosion in

$$\partial_t u = \operatorname{sgn}(u - f) \| \nabla u \|$$

number of iterations behaves like stopping time

Both formulations show similar behaviour!

Bi-cone shaped colour space [Burgeth & Kleefeld, 2013]

- ◆ Bi-cone colour space has values in \$²₊
- ◆ Loewner order gives partial ordering in S²₊

$$A \succcurlyeq B \Leftrightarrow A - B \in \mathbb{S}^2_+$$

- partial ordering allows definition of supremum and infimum
- sup and inf allow definition of dilation and erosion

Discrete colour morphology

- naive approach: compute levelings for each channel separately
 - simple and fast
 - decoupling the channels can lead to wrong results
 - unknown optimal structuring element
- use bi-cone shaped colour space
 - not all colours are comparable
 - arithmetics in this space are not trivial
 - unknown optimal structuring element

PDE-based colour-valued levelings

$$\partial_t u = \operatorname{sgn}(u - f) \| \nabla u \|$$

- finite difference forward time discretisation
- Rouy-Tourin discretisation for derivatives

$$u_z \approx \max\{\max\{D_z^-u, 0\}, -\min\{D_z^+u, 0\}\}$$

with D_z^\pm being forward/backward difference along z

♦ max / min computation of matrices A and B by

$$\frac{1}{2}(A+B\pm|A-B|)$$

Several possibilities for the sign function:

based on Loewner order

$$\operatorname{sgn}(u - f) = \begin{cases} +1, & u \geq f \\ -1, & u \leq f \\ 0, & \text{else} \end{cases}$$

◆ apply sgn on eigenvalues and use Jordan product

$$A \bullet B := \frac{1}{2} \left(AB + BA \right)$$

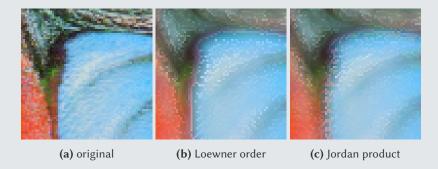
for the matrix-matrix product $\operatorname{sgn}(u-f) \bullet \| \nabla u \|$

Discrete levelings



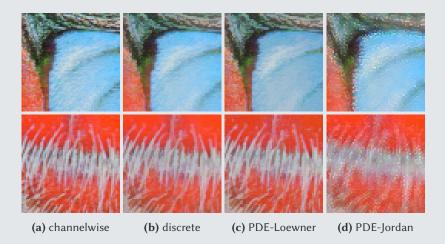
Figure: channelwise approach causes false colours

PDE-based model



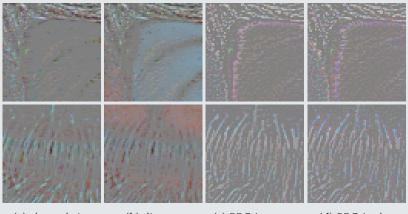
- small scale structures are removed
- Loewner ordering yields clearer edges

Texture discrimination



Texture discrimination

difference to original image reveals texture information



(a) channelwise

(b) discrete

(c) PDE-Loewner

(d) PDE-Jordan

Conclusions

- The discrete approach is fast and simple
 - channelwise computations may yield false colours
 - filters texture and structure information
- PDE-based models are numerically challenging
 - Loewner ordering has fewer artifacts
 - better textures filtering

Thank you very much for your attention!

For more information:

https://www.b-tu.de/fg-angewandte-mathematik/

